
Joseph Morales

Documentation Sample

Following are sample pages from a programming language guide

called WFL Made Simple. It was written as a supplement to a more

formal and complete reference manual. At the time, Unisys

Corporation was attempting to improve its user satisfaction ratings

for software documentation, and the Work Flow Language (WFL)

Reference Manual had been identified as a focus of customer

complaints. The problems probably stemmed from a couple of

causes:

 WFL was intended for a less technical audience than other

programming languages, including operators and others with

minimal programming experience.

 Programming reference manuals at Unisys were produced

based on design documents created by the compiler team,

who were chiefly interested in a formal and rigorous language

description that incorporated complicated syntax diagrams.

Since I had previously done updates to the WFL Reference Manual

and developed examples for it, I was in a good position to

reformulate my understanding of the language in a more user-

friendly format. We decided to take the For Dummies series of books

as a model, and went with an approach that was

 Task and example based, using boldface type to indicate

portions of examples that are called out in the descriptions

that follow.

 Labeled with icons to indicate common information types,

such as Tip, Caution, and Key idea.

Although this was a unique project for Unisys documentation at the

time, I was able to work within existing corporate standards for

format, typography, and style.

WFL Made Simple remains one of my favorite projects because I was

able to break new ground and improve on previous approaches in our

department.

Section 4
Running Tasks

This section explains the following topics related to initiating and controlling
tasks:

• What is a task?

• Using the RUN statement

• Controlling file usage

• Using task equations

• Passing parameters to a task

• Using task variables

• Handling task terminations

• Running tasks in parallel

What Is a Task?
When you run a program from WFL, the system creates something called a
task. A task is a single copy of a program that is executing in system memory.
If you run the same program several times, you create a new task each time.

For a more detailed explanation of tasking concepts, refer to the Task
Management Programming Guide

88077391-000 4-1

Running Tasks

Using the RUN Statement
BEGIN JOB;

RUN (WESLEY)OBJECT/ALTCOM ON SERV;
END JOB
Runs the program (WESLEy)OBJECT/ALTCOM ON SERVo

Key points to remember about the RUN statement:

• The RUN statement can initiate programs written in almost any
programming language (ALGOL,C, COBOL,and so on).

• However, the RUN statement cannot initiate another WFLjob; you must
use the START statement for that purpose. Refer to "Starting a Job from
Another WFLJob" in Section 2.

• The RUN statement must specify the name of the object code file for a
program. The object code file is the compiled version of the program. By
contrast, the source code file stores the program as it was originally written
by the programmer. Object code files often have titles beginning with
OBJECT or SYSTEM. (For information about compiling programs, refer to
Section 8.)

Preventing Accidental Task Restarts
BEGIN JOB;

ON RESTART,
ABORT "Aborting job because of automatic restart";

RUN OBJECT/PAYROLL;
END JOB
Runs the program OBJECTIPAYROLLno more than once. If the system
restarts the job after a haltlload, the ON RESTARTstatement invokes an
ABORT statement to terminate the job.

Rules

The ON RESTART statement is related to the automatic restart feature ofWFL
jobs. The system automatically restarts any WFLjob that is interrupted by a
haltlload. This automatic restart feature is helpful, provided that your job and
its tasks are designed with possible restarts in mind. For information about
how to design ajob for restarts, refer to Section 15, "Designing Jobs for
Restarts."

4-2 88077391-000

Running Tasks

At this point, all you need to know is that automatic restarts can occur if you do
not take steps to prevent them. For example, suppose that your WFLjob runs
a task that prints paychecks. If a haltJload occurs while the task is running,
then after the halt/load, the job is restarted and runs the task again. The result
could be that some paychecks are printed twice.

If your WFLjob runs tasks that should not be restarted, you can use an
ON RESTARTstatement such as the one in the preceding example. The
ON RESTARTstatement specifies actions to be taken if the job is restarted
after a haltJload. The ON RESTARTstatement is never executed unless a
haltJload occurs.

88077391-000 4-3

Running Tasks

Controlling File Usage
When you run a program from WFL,you can control what files the program
uses and change the way that program uses files. You can

• Use file equations to specify the attributes of files used by the program.

• Use data specifications to supply input data for a program.

• Use task attributes to ensure that the program can successfully open a
remote file.

Using File Equations
RUN (WESLEY)OBJECT/ALTCOM ON SERV;

FILE INPUT(KIND=DISK,TITLE=(CHEN)COMDATAjINPUT);
FILE RELCON(TITLE=(CHEN)COMDATA/RELCON ON LBFAM);

Runs a program, and uses file equations for two files used by the program.

FILE
A keyword indicating the start of a file equation.

INPUT and RELCON
Internal names of files used by the program. These names vary from one
program to another.

KIND
A file attribute that specifies the type of medium on which the file resides.
Possible values include DISK,TAPE, CD, PRINTER, and REMOTE,among

4-4 8807 7391-000

Running Tasks

Running Several Tasks at the Same Time
If your WFL job runs multiple tasks, you have a choice between running the
tasks one after another or running them at the same time (in parallel).

Flow of Control for Tasks
Figure 4-1 shows the flow of control for ajob that runs tasks one after another.
The job uses a RUNstatement to initiate each task. The job itself is suspended
and can do no work while each task runs.

WFL Job :+
i--__~

Task A Task B

Figure 4-1. Running Tasks Sequentially

Figure 4-2 shows the flow of control for a job that runs two tasks at the same
time. The job uses a PROCESSRUNstatement to initiate each task. The job
and the tasks run in parallel; that is, all can do work at the same time.

WFL Job

PROCESS RUN
--------~---------~

PROFESS RUN

: ~
Task B

""-----------~Task A

Figure 4-2. Running Tasks in Parallel

Tasks that run in parallel with the job are also known as asynchronous tasks.

4-22 88077391-000

Managing Files

CHANGE: Renaming Disk Files
The CHANGE statement changes the names of one or more files.

Renaming a Single File
CHANGE AUDIT/DB TO AUDIT/DAILY;
Changes the file with the name AUDITIDBto the name AUDITIDAlLY.

Renaming a Directory
CHANGE (OPS)RESULTS/= TO (OPS)SAVE/=;
Changes all the files in the directory RESULTS/= to the directory SAVE/=.

Rules
If the new directory name already exists, the files are added to that directory.
Any files that already belonged to the new directory remain unchanged.

When you rename a directory of files, the system avoids overwriting any
existing file. The system renames as many of the files as it can without
creating conflicts, and leaves the other file names unchanged.

5-2 8807 7391-000

Managing Files

Example of Effects

The following table shows the effects of this statement on a set of files. The
Before column lists the names of the files before the CHANGE statement is
executed. The After column lists the names of the files after the CHANGE
statement is executed.

Before After

RESULTSjlNPUT RESULTSjlNPUT (name is unchanged because of conflict
with existing file SAVEjiNPUT)

RESULTS/USERS SAVE/USERS

RESULTSjDEVCON SAVEjDEVCON

SAVEjiNPUT SAVEjiNPUT

SAVE/QDATA SAVE/QDATA

Renaming Files on a Specified Family
CHANGE WEEKLY/REPORT ON USERC TO DAILY/REPORT;

Changes the name of a file on family USERC.

Rules

The ON <family> part, if it is included, must follow the old file name rather
than the new file name.

If an ON <family> part is not included, the file is assumed to be on family
DISK.

Family Substitution for CHANGE Statements
BEGIN JOB;

FAMILY DISK = ACCT OTHERWISE DEVPK;
CHANGE DAILY/REPORT TO DAILY/BACK;

END JOB

Changes the name of DAILYIREPORTON ACCT to DAILYIBACKON ACCT.
The system does not search DEVPK, even if the file is not present on ACCT.

88077391-000 5-3

Copying Files

Copy Request Basics
The following pages explain how to

• Submit copy requests from CANDE, MARC, and the ODT.

• Copy single files, multiple files, or directories of files

• Copy all files from your own usercode or from another usercode

• Copy all files on a family or all usercoded files on a family.

• Rename files as they are copied.

• Copy files between multiple sources and destinations.

• Combine separate copy requests.

Submitting Copy Requests
You can submit the COPY statement as part of a WFL job or as a command in
CANDE, MARC,NXfI'askCenter, or at an ODT. For information about entering
COPY as a command, refer to "Sources for Submitting WFL Statements or
Jobs" in Section 2, "Submitting WFL Statements and Jobs."

In general, you should store the COPY statement in a formal WFLjob if the
statement is complex or if you plan on using it repeatedly. Otherwise, it is
easier to simply type in the COPY statement as a command.

Copying Single Files
copy OBJECT/PAYROLL/REPORT FROM DBFAM(PACK) TO SERV(PACK);
Creates a copy of OBJECTIPAYROLUREPORT on SERV family. The source file
remains present on DBFAM.

6-2 88077391-000

Copying Files

Copying Multiple Files
copy OBJECT/PAYROLL/REPORT, DATA/INPUT FROM DBFAM(PACK) TO
SERV(PACK);
Copies the files OBJECTIPAYROLIlREPORT and DATNINPUT from one disk
family to another.

Copying Directories
copy DATA/= FROM DBFAM(PACK) TO SERV(PACK);
Copies all the files in the directory DATAI= from one disk family to another.
Does not copy the file DATA itself (if there is one).

Copying All Files from Your Own Usercode
copy = FROM DBFAM(PACK) TO SERV(PACK);
Copies all the files under the usercode of the WFL job from DBFAM family to
SERV family. WFL jobs typically run under the usercode of the MARC or
CANDE session where you started the job.

Copying All Files from Another Usercode
copy (SMITHJA)= FROM DBFAM(PACK) TO SERV(PACK);
Copies all the files under the usercode SMITHJA from DBFAM family to SERV
family.

Rule

If the usercode being copied from is different from the usercode of the job,
then the job must have special privileges. Refer to "COpy or ADD" in
Section 13, "Security."

8807 7391-000 6-3

Flow of Control

IF: Making a Choice
Using IF statements, you can

• Make a choice, based on whether a particular Boolean value is TRUE or
FALSE.

• Provide an alternative ifthe value is FALSE.

• Test several Boolean values by stringing IF statements together or nesting
them.

The Simple IF Statement

Logic Flow

Executes an action if a test condition is TRUE. Otherwise, skips past that
action.

Example

RUN OBJECT/VALIDATE [T];
IF T(TASKVALUE = 1) THEN

BEGIN
PRINT VALID/DATA/=;
REMOVE TEMP/VALIDATE;

END;
Executes a PRINT statement and a REMOVE statement if the task
OBJECTNALIDATE set its TASKVALUEtask attribute to 1.

Rules

The IF statement executes another statement if a particular condition is true.
You specify the condition that should be checked, and the statement that
should be executed if the condition is true.

8807 7391-000 10-3

Flow of Control

Test Condition

For descriptions of the various types of conditions that can be tested in an IF
statement, refer to "Booleans: Evaluating Truth Conditions" in Section 11,
"Working With Data."

Providing an Alternative with IF ELSE

Logic Flow

Executes one of two actions, depending on whether the test condition is TRUE
or FALSE.

Example

IF FILE TRANS/STATUS IS RESIDENT THEN
RUN OBJECT/TRANS;

ELSE
ABORT "NO FILE TRANS/STATUS";

Checks whether a file is resident, and takes one of two different actions,
depending on the result.

10-4 88077391-000

Flow of Control

WAIT: Interrupting the Job Temporarily
Logic Flow

Stops execution of the job until a particular condition is fulfilled.

Waiting for a File
WAIT (FILE TEMP/INDEX/HTML ON SERV IS RESIDENT);
Waits until the file TEMPIINDEXlHTML is present on SERV family.

Waiting for an Operator OK
WAIT (OK);
Waits for the operator to enter a <mix number> OK command.

Waiting for a Length of Time
WAIT (120);
Waits for 120 seconds (that is, two minutes).

Waiting for Tasks
The WAIT statement has several features that allow the job to wait for parallel
tasks. Refer to the following topics in Section 4, "Running Tasks":

• "Waiting for Tasks to Terminate"

• "Waiting for Changes in Task Status"

• "Waiting for a Task Attribute Value"

10-18 88077391-000

Flow of Control

ABORT and STOP: Interrupting the Job
Permanently

Logic Flow

ABORT 01
STOP

End of Job

Ends execution of the job. Any remaining statements in the job are never
executed.

Example

RUN OBJECT/PREPARE [T1];
IF T1 IS NOT COMPLETEDOK THEN

ABORT "Job aborted due to failure of OBJECT/PREPARE";
RUN OBJECT/SORTDATA [T2];
IF T2 IS NOT COMPLETEDOK THEN

STOP "Job terminated due to failure of OBJECT/SORTDATA";
RUN OBJECT/REPORT;
The ABORT and STOP statements differ only in the termination messages they
produce.

• An ABORT statement causes the system to display a P-DS termination
message, which is typical of an abnormal termination.

• A STOP statement causes the system to display an EOJ termination
message, which is typical of a normal termination.

88077391-000 10-19

	Joseph Morales - Document Sample
	wfl 4-10001
	wfl 4-20002
	wfl 4-30001
	wfl 4-40001
	wfl 4-220001
	wfl 5-20001
	wfl 5-30001
	wfl 6-20001
	wfl 6-30001
	wfl 10-30001
	wfl 10-40001
	wfl 10-180001
	wfl 10-190001

